

330-995-9642

INSTALLATION AND SERVICE MANUAL

TRC-1

FM SWITCH CONTROLLER

REV 2011

FM switch controller - general 2
PLC (programmable logi c controller) 2
Controller connections 3
Renote command inputs 3
Remote control stat us out puts 3
Transmitter interlocks 3
Dummy I oad connections 4
Switch position tally connections 4
Mbtor control voltage - 50000 series 5
Mbtor control voltage - 60000 series 5
Auto transfer connections 5
OPERATI ON 6
Front panel status indi cators 7
Load i nterlock 7
Fuses 7
Auto transfer operation 7
One- button transmitter 2 change 8
Controller schematic di agram 9
I nterconnection chart for 50000 and 60000 10
Additional coax switches 11
Component I ayout 12
50000 coax switch manual 7 pages
60000 coax switch manual 10 pages

330-995-9642

FM SWITCH CONTROLLER

This is a controller for one coax switch, two transmitters, one antenna, and a dummy load. It is compatible with Dielectric 50000 and 60000, Delta, Andrew, MCl coax switches, or any other switch with 12VDC, 24VDC, or 120VAC position command inputs. The controller can also be used with AM RF contactors, directly if the contactor is 120VAC or with pilot relays for 240VAC. An alternate program is usually loaded into the PLC for use with AM contactors, which can speed up transmitter changes, although this is not required.

The coax switch or RF contactor is connected to a 9-pin AMP socket on the rear panel. All other connections are made to barrier strip terminals. Two and three switch controllers are also available in several configurations.

PLC (PROGRAMMABLE LOGIC CONTROLLER)

This is a PLC-based coaxial switch and transmitter interlock controller, intended for FM transmitter sites. Switch timing and transmitter interlocks are controlled by a NAIS FP0-C14RS programmable logic controller. Programmable logic controllers are not well known to broadcast engineers but have been used in the manufacturing industry for decades.

No knowledge of PLC programming is needed to install and use the FM controller.

The PLC uses EEP-ROM for program memory. No backup battery is required, so program loss should not be a concern, even if the controller is unplugged for months or years.

The 24 volt power supply illuminates front panel indicators, energizes DC coax switch relays, and provides operating and input common voltage for the PLC.

The DC fuse is $1 / 2 \mathrm{~A}$. The AC fuse should be about 3A if a Dieletric 50000 coax switch is used. For other coax switches that do not get motor power through the controller, a 1A fuse could be used. The AC fuse is 3A when shipped.

CONTROLLER CONNECTIONS

Schematic drawings and interconnection charts are provided for Dielectric 50000 and 60000 , Andrew, Delta, and MCl coax switches. Some variations in nonDielectric internal wiring turn up occasionally, so if the original documentation for your switch is available, its wiring should be verified. Connections to the coax switch are on the 9-pin AMP socket. All other connections are to terminals 1-20.

REMOTE COMMAND INPUTS

Controller terminals 1-3 are the remote position select connections. Floating relay contacts are best, such as the Burk IP-8, but open collector equipment may be compatible depending on its polarity and operating voltage.

REMOTE CONTROL STATUS OUTPUTS

The remote control status outputs, terminals 4-6, are connected through diodes to the front panel status indicators. The PLC used in the controller was selected because of its low cost (to help keep the controller cost low), and it has a limited number of outputs, so the two status functions are combined. The remote control status outputs are compatible with most remote control systems, Burk for an example. The Burk documentation states that their status inputs can be connected to circuits up to 28 VDC. The only requirement is that one state of the circuit is ground or near ground. The PLC output relays cause terminals 2 and 3 to go near ground when a remote status indication is desired. The series diodes keep the controller's front panel indicators from lighting through the remote control's pull-up resistors. The diode-coupled status output circuit has been used on more than 100 FM controllers so far, with no problems reported.

TRANSMITTER INTERLOCKS

The transmitter interlock terminals 15-18 are to be connected to the interlock or mute terminals of the transmitter(s). Older transmitters that do not have terminals designated for this purpose may have connections for remote plate off. If this circuit requires a continuous closure to keep the plate on, the controller's interlock terminals may be wired in series with the transmitter/remote control circuit.

In older transmitters the interlock or remote plate off circuit may be 120VAC. The PLC relays are rated for 250VAC (at 2A), so it is up to the judgment of the installer whether to connect AC control circuits to the controller. It is generally best to install DC relays in the transmitter.

The interlock logic (normally open/normally closed) can be reversed with internal jumper plugs, as shown on the component layout page.

DUMMY LOAD CONNECTIONS

The tally terminals of your dummy load should be connected to controller terminals 7 and 8 . The PLC has been programmed to operate correctly with a dummy load contact closure when the blower or water is "on". This allows the transmitter not on-air to be energized, for load testing.

When the load interlock function is not being used, the off-air transmitter is muted. Its filament and blowers should be able to operate.

If you are load testing the off-air transmitter and somebody on- or off-site hits transmitter change, both transmitters will be muted while the switch is moving, so local mode is not required for routine load testing.

If you have a convection load, an external switch should be connected to the load interlock terminals. A switch is usually preferable to a permanent jumper, so that when no one is at the site the off-air transmitter is not allowed to run into the load.

An external load interlock switch might also be desirable with Altronic loads, due to the nature of their tally contact operation - whenever power is applied, their tally contacts close, and will open only if the load overheats. This could allow operator error to turn on an off-air transmitter, and while the load would theoretically not be damaged, the heat from the extra transmitter and the load could cause problems in many transmitter buildings, given some time. Alternatively, you might decide to leave an Altronic load disconnected from power when no one is there.

SWITCH POSITION TALLY CONNECTIONS

The controller needs to know which position the coax switch is in, to operate the transmitter interlock closures and position change commands. These connections are made to AMP connector pins 1-4. The switch ports you have connected to the transmitters, antenna, and load will affect the way the controller works. The controller will work with any switch port arrangement. The needed logic is selected by the presence or absence of a jumper between controller terminals 9 and 10 .

Although there are 4 possible port arrangements (the antenna can be connected to ports 1-4, etc.), there are only two considerations we need to be concerned with: is transmitter 1 connected to the antenna when the switch is in position 1 or position 2?

Note: Dielectric 50000 switches have a mechanical position indicator. Other switches may have a similar indicator. Any switch manual should provide position/port connection drawings.

If the answer is position 1 , no jumper is needed. If the answer is position 2 , the jumper is needed (terminals 9-10). If the jumper/no jumper is wrong, the front panel position indicator pairs will operate backward, and the wrong transmitter interlock will close.

MOTOR CONTROL VOLTAGE - DIELECTRIC 50000 SERIES

The controller is compatible with (50000 series) coax switches that have 12 VDC, 24 VDC or 120 VAC motor control relays. The controller has internal jumper plugs to select control voltage.

Andrew, Delta and MCl coax switches can be used with the controller, using a modified connection chart, provided as needed. Solenoid-type switches might be compatible with the controller but they are generally considered inferior to motorized types, and no consideration for solenoid switches was given to the controller design.

MOTOR CONTROL VOLTAGE - 60000 SERIES

The 60000 switch will operate from DC or 120VAC commands, but the cable wiring is different. Generally, DC control is preferred. The controller has internal jumper plugs to select DC or AC command voltage.

Another control option is possible with 60000 series coax switches - if the control board on the switch is damaged or removed, the FM controller can operate the switch by wiring directly to the 3-terminal motor (the controller must be in 120VAC mode). The 60000 switch motor has one winding for CW , and one for CCW.

AUTO TRANSFER CONNECTIONS

The key switch selected auto transfer will change to transmitter 2 if transmitter 1 fails, and will turn on transmitter 2. To use auto transfer, a transmitter 1 "on" signal must be provided to the controller. This can be done two ways; a floating contact closure (closed $=$ on), or a 5 volt signal capable of about 70 mA (5 volts = on). The 5 volt terminals are connected directly to the coil of a small relay, and not grounded. The 5 volt relay coil has a parallel diode for back voltage suppression, so polarity matters - terminal 11 is positive.

The transmitter 1 "on" closure or 5 volt signal can come from the transmitter or any external device such as an RF power detector or suitable modulation monitor. Circuit modifications or additions may be required. Either signal will light the TX 1 PLT ON indicator on the back of the controller. This indicator should be checked before turning the auto mode key switch on.

Auto transfer will turn on transmitter 2 with a momentary relay contact, terminals 19 and 20. This momentary closure comes from a capacitor and relay arrangement. When the transmitter 2 status indicator comes on (in auto mode only), a 1000 mfd capacitor will charge through the coil of K3, energizing the relay for about 1 second. When the transmitter 2 status indicator is off, the capacitor will discharge in about 30 seconds through a 10k resistor. A series diode keeps the transmitter 2 status indicator pair from lighting through the coil of K3, when transmitter 1 in on the antenna. K3 will not do anything unless the auto key switch is on. A separate PLC output for transmitter 2 plate on would be ideal, but does not justify the expense of a larger PLC.

Behavior of the auto transfer function is described further in the operation section.

OPERATION

The two front panel pushbuttons are the local controls for selection of transmitters 1 and 2 to the antenna. If the front panel pushbutton for the transmitter already on-air is pushed, nothing will happen. A switch change command locks out the other for the duration of the switching sequence. The switching sequence is: transmitter interlock connections open, 1 second delay, coax switch operation (as long as it takes up to 30 seconds), at completion of switch movement, interlock delay, 0.2 second (to let the coax switch settle mechanically, and transmitter interlock(s) on.

During the transfer sequence, the status indicator pair for the position being switched to will flash. You may hear the PLC's internal relay operating, which causes the indicator to flash.

The controller has terminals for remote position change commands. These work exactly as the front panel pushbuttons unless the controller is in local. In local, only the front panel pushbuttons are active.

After a switch sequence has been started, if the coax switch doesn't "get there" neither interlock will be completed. This is the primary purpose of the controller, of course. If the switch "hangs" during a transfer the controller will reset after 30 seconds, when the transfer can be attempted again.

If the coax switch does not start to move within 2 seconds after a position change command, and the switch is still in a valid position, the interlock for the correct transmitter will be restored. This is unlikely but might happen if the switch motor AC power connection fails.

If the coaxial switch is moved manually, the transmitter interlocks will open. This protects the switch and transmitter as much as possible under this circumstance, but this should not be done with transmitter(s) on. The coax switch must be moved slightly before its position switch is activated, which means that its
contacts will be moved under power, which is not desirable. If the switch is moved manually, when it "makes" either position, there will be a 0.2 second delay before the interlock(s) is restored.

FRONT PANEL SWITCH POSITION STATUS INDICATORS

The coax switch position status indicator pairs and flow chart graphic indicate the transmitters' signal path to antenna or load. The switch position number, 1 or 2, that corresponds to main transmitter on-air depend on which ports the transmitters and/or and antenna(s) and dummy load have been connected to. The controller is set up for the appropriate switch port arrangement, described in the connections section.

LOAD INTERLOCK

With fan-cooled or water loads, the tally contacts in the load will allow the off-air transmitter to run, through the controller's load interlock circuit. When the load is on, the front panel dummy load indicator is on, for testing transmitters. With convection loads, an external switch should be connected to the load interlock terminals. If a transmitter change command is given during a load test, the coax switch is protected, because both transmitters will be muted.

FUSES

The front panel DC fuse, $1 / 2 \mathrm{~A}$, is on the output of the 24 V power supply. The AC fuse is in series with the "hot" lead for the entire controller, and the AC power for the coax switch. This fuse should be about 3A with Dielectric 50000 switches. Larger fuses can be used, at your judgment. The controller's internal power wiring is 18 ga .

AUTO TRANSFER

The optional key switch selected auto transfer will change to transmitter 2 if transmitter 1 fails. To use auto transfer, the controller requires a continuous signal to indicate that transmitter 1 is on - see CONNECTIONS section. Before turning the auto key switch on, the rear panel transmitter 1 indicator should be checked.

When the auto key switch is on, if transmitter 1 fails for 5 seconds, the controller will switch to transmitter 2. If transmitter 1 fails for less than 5 seconds but comes back on, the 5 second timer will reset.

Auto transfer does not start to work until the controller has been on for 5 minutes. If auto transfer is to be used, not connecting the controller to a UPS might be considered. If the main transmitter goes off due to power failure but the controller is still on because of the UPS, the coax switch will be moved to the transmitter 2 position. When power comes back, the station could be off-air unnecessarily because the main transmitter would then be connected to the dummy load.

Worse, it might run into the load, depending on the load interlock wiring situation, and an operator might not know the station is off-air.

Auto transfer may not be appropriate for all stations. Failure of one power line phase might cause a transmitter change you didn't want, if the rack power didn't drop out. If the transmitter's plate on status is used to provide the "on" signal to the controller and the exciter fails, there could be nothing on air (no drive) but the controller would not transfer.

When the auto key switch is on, when the coax switch gets to the transmitter 2 position, a momentary transmitter 2 plate on contact closes. Most tube-type transmitters will come on with a plate on command only (a separate filament command not needed), with warm-up delay of course. The controller does not turn either transmitter off, and will not turn transmitter 1 on when you switch back.

Whenever the auto key switch is on, a change to transmitter 2, whether local, remote, or automatic, will not flash the front panel transmitter 2 status indicator pair during the change. The indicators will light normally when the coax switch is in the transmitter 2 position.

ONE-BUTTON TRANSMITTER 2 CHANGE

It is possible to use the transmitter 2 auto transfer momentary plate on closure without using the auto transfer, so that an operator can switch to transmitter 2 onair with one command. A jumper on terminals 13 and 14 will prevent the controller from automatically changing transmitters, and by leaving the auto key switch on, the transmitter 2 plate on closure will operate whenever the coax switch moves to the transmitter 2 position. The front panel position indicators and the remote status output for transmitter 2 will not flash when the auto key switch is on, but the switching sequence is otherwise the same.

Switching back to transmitter 1 on-air will require an external plate on command, but if transmitter 2 is the standby, the automatic change to transmitter 2 may be a benefit if the main transmitter fails.

SWITCH AND REMOTE CONTROL (SUCH AS BURK) CONNECTIONS

 50000 AND 60000 SERIES

COAX SWITCH CONNECTIONS FOR FM CONTROLLERS

DIELECTRIC	DIELECTRIC	DI
50000	60000	
DC COMMANDS	DC COMMANDS	AC

DIELECTRIC 60000 DC COMMANDS

DIELECTRIC 50000 DIELECTRIC
50000 AC COMMANDS AC COMMANDS

CONTROLLER PX

P1-1	-SW1 POS 1 TALLY
P1-2	SW1 POS 1 TALLY
P1-3	-SW 1 POS 2 TALLY
P1-4	-SW 1 POS 2 TALLY
P1-5	SW1 POS 1 COMMAN
P1-6	COMMAND COM
P1-7	-SW1 POS 2 COMMAN
P1-8	-FUSED 120 VAC -
P1-9	-NEUTRAL

\qquad

DELTA	ANDREW	MCl
-1	-0	O^{H}
-0	\bigcirc	-0^{J}
	$\bigcirc \bigcirc$	$0^{\text {L }}$
-2	$\bigcirc 0$	-0^{M}
	- 1	$\bigcirc^{\text {A }}$
	$\bigcirc 3$	$\bigcirc{ }^{\text {c }}$
\bigcirc	\bigcirc	O^{B}
03		O^{E}
		$\bigcirc{ }^{\text {D }}$

ANDREW REQUIRES REVERSE POLARITY HEADER
ANDREW 24VDC ONLY
DELTA 120VAC ONLY
MCI MAY HAVE 5V CONTROL RELAY - CHANGE TO 12V OR 24V

TERMINAL NUMBERS FOR DELTA, ANDREW, MCI MAY NOT BE CORRECT FOR EVERY MODEL

TRC-1

Instruction Manual IB 016

DIFLECTRIC

MODEL 50000

MOTORIZED

COAXIAL SWITCHES
 $15 / 8 \& 31 / 8$

TABLE OF CONTENTS

Section Title Page1.General Description2
2. Specifications 2
3. Theory of Operation 3
4. Installation 35.Operation5
6.Maintenance and Repair5
7.Replacement Parts6
8. Ancillary Equipment 6
LIST OF ILLUSTRATIONS

Figure No.
1.
2.
3.

Title
Page
Model 50000 3-1/8 4 Port Transfer Switch .. Inside front cover
Outline Drawing, Model 50000 1-5/8 and 3-1/8 Coaxial Switch4
. Schematic Diagram, Model 50000 Coaxial Switch 7

Model 50000
Motorized Coaxial Switch

1. GENERAL DESCRIPTION.

The Model 50000 Coaxial Switch provides reliable and fast switching of coaxial transmission line systems. It is a motor driven, rotary type, and can be controlled locally and/or remotely.

The switch is equipped with a manual over-ride, a mechanical position indicator, and is fully protected with auxiliary read-out and inter-lock circuits.

Operable in any position and having a minimum of moving parts, 100,000 cycles are normal without failure.

EIA male flanges are standard with adapters available to mate with unflanged or semiflex transmission lines.
2. SPECIFICATIONS.

Size	$15 / 8$	$31 / 8$
Frequency Range	DC - 900 mHz	DC - 900 mHz
Characteristic Impedance	50 ohm	50 ohm
VSWR Maximum	1:05.1	1.05:1
Insertion Loss	0.1 db	0.1 db
Power Rating Peak Average @ 30 mHz @ 300 mHz @ 900 mHz	$\begin{array}{r} 150 \mathrm{kw} \\ 25 \mathrm{kw} \\ 6 \mathrm{kw} \\ 4 \mathrm{kw} \end{array}$	$\begin{array}{r} 500 \mathrm{kw} \\ 90 \mathrm{kw} \\ 30 \mathrm{kw} \\ 15 \mathrm{kw} \end{array}$
Switching Time, nominal	2 seconds	2 seconds
Isolation	60 db	60 db
R.F. Connectors	EIA Male	EIA Male
Drive Motor Current $\begin{array}{r} 1 \varnothing-50 / 60 \mathrm{~Hz} \\ \begin{array}{rl} @ & 115 \mathrm{~V} A C \\ & @ 230 \mathrm{~V} \mathrm{AC} \end{array} \end{array}$	3.5 Amp., start; 1.5 Amp., start;	Amp., run Amp., run
Control Relay Power D.C. Coils A.C. Coils	1.2 Watts 2.7 Volt Amps.	
Auxiliary Switch Ratings © 125 V DC © 250 V AC	$\begin{aligned} & \text { 0.3 Amp. } \\ & \text { 10.0 Amps } \end{aligned}$	
Net Weight	$42 \mathrm{lb} .-19 \mathrm{~kg}$.	$54 \mathrm{lb} .-24.5 \mathrm{~kg}$.
Gross Packed Weight	$48 \mathrm{lb} .-21.7 \mathrm{~kg}$.	$65 \mathrm{lb} .-29.5 \mathrm{~kg}$.
Gross Packed Cube	$3.58 \mathrm{ft} .^{3}-.10 \mathrm{~m}^{3}$	$3.58 \mathrm{ft} .^{3}-.10 \mathrm{~m}^{3}$

3. THEORY OF OPERATION.

The Model 50000 Coaxial Switch is a rotary type switch having an aluminum R.F. cavity common to all ports. The rotor assembly contains two inner conductor blades and a common isolating ground plane which oscillates 90° to accomplish the switching function and provide isolation between transmission line paths.

The rotor is driven by a gear motor and slip clutch mechanism. When the motor is activated by connection through the control relay, it will rotate 90° until the mechanism reaches a positive stop. Simultaneously an auxiliary switch is activated to interrupt the motor circuit. Any inertia of the drive is absorbed by slippage of the clutch mechanism.

Auxiliary switches are positioned at each end of travel and are adjusted so that in the closing mode they do not activate until the R.F. contacts are ready to accept power. Conversely, in the opening mode, the auxiliary contacts open prior to the R.F. contact to prevent the breaking of the switch under R.F. power.

4. INSTALLATION.

The switch may be mounted in any convenient position using the four (4) mounting holes shown in Figure 2. Orient the R.F. ports to meet the required transmission line layout.

The manual operate handle should be in an accessible location for emergency switching in the event of control power failure.

Provide twelve (12) inches clearance above the top of the motor drive cover to allow for removal for maintenance.

After the switch is properly mounted in position, remove hardware and protective covers from the R.F. connectors. Attach adapters or EIA female flanged lines to the switch ports and re-install hardware. CAUTION -- Tighten bolts evenly and do not exceed torque ratings of eleven (11) foot pounds on the 1-5/8 and twenty (20) foot pounds on the $3-1 / 8$.

NOTE: The R.F. contacts of the switch flanges protrude above the flange surface, and when properly connected there will be a space between the flanges at the bolt circle. Tightening beyond rated torque will destroy both the switch flange and the mating transmission line flange.

Activate the R.F. switch manually to both positions to be sure rotor moves freely and reaches the positive stops.

Attach electrical supply wiring and control wiring to the removable MS3108B jack supplied with each switch. Refer to Figure 3 for proper connections.

Attach jack to plug and check readout and interlock circuits with continuity tester or ohm meter for proper operation.

Apply correct supply voltage.
Place R.F. switch rotor mechanism in approximately mid-position using manual operate knob.

Momentarily apply correct voltage to pins C and N (observe polarity) and check that position indicator starts to move toward position one. If rotation is incorrect check wiring; if correct, apply control voltage continuously to pins C and N.

Model 50000
Motorized Coaxial Switch

Figure 2. Outline Drawing Model 50000 1-5/8 and 3-1/8 Coaxial Switch

7. REPLACEMENT PARTS.

T1
S1, S2, S3, S4
K

J1
CC
H

Transformer, 220V-110V
Auxiliary Switch
Relay Assembly - 240V AC 120 V AC 110V DC

B44624-504 24V DC 12V DC
Plug
Jack
Cable Clamp
Harness Assembly (includes S1, S2, S3, S4, P1 and Relay sockets)

A19636-1
A44876-1
B44624-501
B44624-502
B44624-503
B44624-505
A44867-1
A23561-1
A19720-1
A44586-501
8. ANCILLARY EQUIPMENT.*

| Adapter | $3-1 / 8$ EIA-F to $3-1 / 8$ No Flange, $6^{\prime \prime}$ long | B44900-502 | |
| :--- | :--- | :--- | :--- | :--- |
| Adapter | $3-1 / 8$ EIA-F to 3-1/8 EIA-F, 6" 1ong | C7999-501 | |
| Transition | $3-1 / 8$ EIA-F to 1-5/8 EIA-F, 6" 1ong | B25623-501 | |
| Transition | $3-1 / 8$ EIA-M to Type N-F | C14397-503 | |
| Adapter | $1-5 / 8$ EIA-F to 1-5/8 No Flange, $6^{\prime \prime}$ long | B44920-502 | |
| Adapter | $1-5 / 8$ EIA-F to 1-5/8 EIA-F, 6" long | D30997-1 | |
| Transition | $1-5 / 8$ EIA-M to Type N-F | | C21109-503 |

* All components listed are copper; similar items having aluminum outer conductors are available. Contact Dielectric Communications for a complete line of coaxial and waveguide transmission lines and components.

Figure 3. Schematic Diagram Model 50000 Coaxial Switch

IB-426-Rev D

P/N 85171

Model 60000
 Motorized Coaxial Switches $15 / 8 ", 31 / 8 ", 41 / 16 "$ and $61 / 8 "$

Instruction Manual

Table of Contents

1.0 General Description 2
2.0 Specifications 3
3.0 Theory of Operation 3
4.0 Installation 3
5.0 Operation 3-4
6.0 Maintenance and Repairs 4
7.0 Ancillary Equipment 5
Fig. 1 Outline Drawing 6
Fig. 2 Wiring Diagram 7
Wiring Table 8
Wiring Details 9

Note: All specifications are for reference only. Consult factory for details.

WARNING

All Electrical and RF work must be done in accordance with local and national codes and safety requirements.

1.0 General Description

The Model 60000 Coaxial Switch provides reliable and fast switching of coaxial transmission line systems. It is a motor driven rotary type and can be controlled locally or remotely.

The switch is equipped with a manual over-ride, mechanical position indicators and with auxiliary read-out circuits.

Operable in any position and having a minimum of moving parts, the switch will routinely operate through 1,000,000 cycles without failure.

EIA male flanges are standard with adaptors available to mate with unflanged or semiflex transmission lines.

2.0 Specifications

	$15 / 8 "$	3 1/8"	4 1/16"	$\begin{gathered} 61 / 8^{\prime \prime} \\ 50 \mathrm{Ohm} \end{gathered}$	$\begin{aligned} & 61-/ 8 " \\ & 75 \mathrm{Ohm} \end{aligned}$
Frequency Range	DC-900 MHz	DC-900 MHz	DC-800 MHz	DC-800 MHz	DC-800 MHz
Characteristic Impedance	50 Ohm	50 Ohm	50 Ohm	50 Ohm	75 Ohm
VSWR Max.	1.05:1				
Insertion Loss	0.1 dB max.				
Power Rating Peak Average at 30 MHz Average at 300 MHz Average at 900 MHz	$\begin{gathered} 150 \mathrm{kw} \\ 25 \mathrm{kw} \\ 6 \mathrm{kw} \\ 4 \mathrm{kw} \end{gathered}$	$\begin{aligned} & 500 \mathrm{kw} \\ & 90 \mathrm{kw} \\ & 30 \mathrm{kw} \\ & 15 \mathrm{kw} \end{aligned}$	$\begin{gathered} 1000 \mathrm{kw} \\ 150 \mathrm{kw} \\ 50 \mathrm{kw} \\ 25 \mathrm{kw} \end{gathered}$	$\begin{gathered} 2000 \mathrm{kw} \\ 300 \mathrm{kw} \\ 100 \mathrm{kw} \\ 45 \mathrm{kw} \end{gathered}$	$\begin{gathered} 1500 \mathrm{kw} \\ 225 \mathrm{kw} \\ 75 \mathrm{kw} \\ 38 \mathrm{kw} \end{gathered}$
Switching Time (nominal)	3 seconds	3 seconds	3 seconds	4 seconds	4 seconds
Isolation	60 dB				
RF Connectors	EIA Male				
Drive Motor Current $1 \varnothing-50 / 60 \mathrm{~Hz}$ at 115 V AC at 230 V AC	Run Current 115 Nom. . 6 AMP 230 Nom. . 5 AMP			115 Nom. 1.25 AMP 230 Nom. . 9 AMP	
Auxilary Switch Ratings	120 VAC 3A				
	28 VDC 3A				
Net Weight	$\begin{aligned} & 36 \mathrm{lbs} \\ & 16 \mathrm{~kg} \end{aligned}$	$\begin{gathered} \hline 47 \mathrm{lbs} \\ 21.5 \mathrm{~kg} \end{gathered}$	$\begin{aligned} & \hline 60 \mathrm{lbs} \\ & 27 \mathrm{~kg} \\ & \hline \end{aligned}$	$\begin{gathered} 130 \mathrm{lbs} \\ 59 \mathrm{~kg} \end{gathered}$	$\begin{gathered} 120 \mathrm{lbs} \\ 54 \mathrm{~kg} \end{gathered}$
Gross Packed Weight	$\begin{gathered} \hline 48 \mathrm{lbs} \\ 21.7 \mathrm{~kg} \\ \hline \end{gathered}$	$\begin{array}{r} 65 \mathrm{lbs} \\ 29.5 \mathrm{~kg} \\ \hline \end{array}$	$\begin{aligned} & 85 \mathrm{lbs} \\ & 38 \mathrm{~kg} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 185 \mathrm{lbs} \\ 84 \mathrm{~kg} \\ \hline \end{gathered}$	$\begin{aligned} & 170 \mathrm{lbs} \\ & 77 \mathrm{~kg} \\ & \hline \end{aligned}$
Gross Packed Cube	$\begin{aligned} & 3.58 \mathrm{ft}^{3} \\ & .10 \mathrm{~m}^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.58 \mathrm{ft}^{3} \\ & .10 \mathrm{~m}^{3} \\ & \hline \end{aligned}$	$\begin{gathered} 9 \mathrm{ft}^{3} \\ .26 \mathrm{~m}^{3} \\ \hline \end{gathered}$	$\begin{aligned} & 12.6 \mathrm{ft}^{3} \\ & .35 \mathrm{~m}^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 12.6 \mathrm{ft}^{3} \\ & .35 \mathrm{~m}^{3} \\ & \hline \end{aligned}$

3.0 Theory of Operation

The Model 60000 Coaxial Switch is a rotary type switch having an aluminum RF cavity common to all ports. The rotor assembly contains two inner conductor blades and a common isolating ground plane which oscillates 90° to accomplish the switching function and provide isolation between transmission line paths.

The rotor is driven by a gear motor. When the motor is activated by connection through the control, it will rotate 90°.
Six normally open microswitches are provided for position confirmation. The rotor activates these microswitches; and they must not be used for transmitter interlocking. One must ensure that RF power is off before a position command is activated. Dielectric cannot be responsible for failure or burnout of switches switched under power.

3.1 Inside the Drive

The drive used on the 60000 switches is an AC power segregated AC/DC command actuator. The drive is operated by 115 VAC , OR 230 vac and controlled by 12-24 VDC or 115/230 VAC. The different voltages can be selected without removing the cover. See the schematic for pin out for the configuration required. Do not apply AC and DC commands to the drive at the same time. There is no need to open the switch unless local push button operation is required.

4.0 Installation

1. The switch may be mounted in any convenient position using the four mounting holes shown in Figure 1. Orient the RF ports to meet the required transmission line layout.
2. The manual operate handle stub should be in an accessible location for manual switching in the event of control power failure. Provide a minimum of eight inches of clearance above the top of the motor drive cover to allow for removal.
3. After the switch is properly mounted in position, remove hardware and protective covers from the RF connectors.
4. Attach adaptors or EIA female flanged lines to the switch ports and re-install hardware.
5. Note: The RF contact of the switch flanges protrudes above the flange surface and when properly connected there will be a space between the flanges at the bolt circle. Tightening beyond rated torque will destroy both the switch flange and the mating transmission line flange.

CAUTION

Tighten bolts evenly and do not exceed torque rating of eleven (11) foot pounds on the $15 / 8$ " switch or twenty (20) foot pounds on the $31 / 8^{\prime \prime}, 41 / 16^{\prime \prime}$ and 6-1/8" switchos.

5.0 Operation

The 1 5/8", 3 1/8", 4 1/16" AND 6-1/8" Model 60000 switches will change positions in approximately three seconds upon command.

The interlock circuits should be employed to prevent RF power being applied unless a legitimate RF transmission line path has been completed through the switch to an antenna or dummy load. Ensure that RF is off before the switch is commanded for position change.

Warning! User must remove all RF power before switching!

The 60000 series can be operated in four ways.

1. Locally with the cover removed.
2. Locally with the S60 Pendant. This device does not include any provisions for interlocks.
3. Remotely with connection through the Amp connector.
4. Manually with a $3 / 8$ " wrench or optional hand wheel.

To operate the switch locally with cover removed:
A. Remove AC power and remove the cover.
B. Set the "Man Run" switch to "Man". Plug in AC power
C. Press either the "CW or CCW" button to desired position and hold until the motor stops.
D. Reset "Man Run" switch to "Run" and replace cover when done.

To operate with the S60 Pendant:
A. Connect Amp connector and AC power.
B. The active side pilot light will illuminate.
C. Select the desired position. Indicator lights will change status as switch moves.

To operate through Amp connector:
A. Connect Amp connector and apply AC power.
B. Connect control end cable and operate through control.

To operate manually:
A. Assure AC power and Amp connectors are unplugged.
B. Using wrench or hand wheel press down and turn until pointer on cover lines up with desired position.

6.0 Maintenance and Repairs

The Model 60000 Switch requires no periodic maintenance. However, after the initial installation is complete, the cover should be removed and the switch inspected for loose electrical connections and/or auxiliary switch hardware.

WARNING

Removal of the cover may expose live electrical terminals (240 V AC maximum).
Some sub-assemblies of the units are sealed at the factory after test; breaking these seals voids any warranty and field repair of these assemblies is not recommended.

7.0 Ancillary Equipment*

	Description	Part Number
Adaptors		
$15 / 8$ " EIA-F	to $15 / 8$ " no flange, 6 " large	B-44920-502
	to $15 / 8$ " EIA-F, 6" large	D-30997-001
$31 / 8$ " EIA-F	to $31 / 8$ " no flange, $6^{\prime \prime}$ large	B-44900-502
	to $31 / 8$ " EIA-F, 6" large	C-7999-501
4 1/16" EIA-F		
Transitions		
15/8" EIA-M	to Type N-F	C-21109-503
$31 / 8^{\prime \prime}$ EIA-F	to $15 / 8$ " EIA-F, 6" large	B-25623-501
$31 / 8$ " EIA-M	to Type N-F	C-14397-503
4 1/16" EIA-F		
Cable		
Dual Switch Controller to 60000 Switch-25'		0101873-025
Dual Switch Controller to 60000 Switch-50'		0101873-050
To adapt 60000 switch CPC 24 pin to 16 pin AMP CPC ("Type C")		85156
To adapt 60000 switch to 50000 amphenol connector		85144
S60 Pendant Control	10' AMP connector cable, AC power cable, and switch box.	85145
Extension Cable	25' Eight conductor cable assembly for longer S60 pendant applications.	85157

*All components are copper; similar items having aluminum outer conductors are available. Contact Dielectric Communications for a complete line of coaxial and waveguide transmission lines and components.

(2)
(1)

SPDT

POSITION 1 POSITION 2

4 PORT TRANSFER

SWITCH	'A'	"日"	'['	'D'	"E"	'F'	"G'	'H'
1-5/8	7.38	12.13	1,50	11.50	10.75	9,50	3.75	41
3-1/8	7.38	12.75	1.74	16.25	15.00	10.69	5.50	. 56
4-1/16	7.38	12.88	1.72	17.56	16.50	12.69	6.50	. 56

Figure 1

Figure 2

Note:

1. The actuator only requires a $1 / 2$ second command pulse to latch the control in. A maintained command will not harm the unit.
2. Do not apply AC and DC commands at the same time.
3. For AC command between 110 VAC and 230 VAC , hook the common AC conductor to Pin 13 and position 1 and 2 commands to pins 22 and 23.
4. For DC command between 12 and 24 VDC , hook the negative conductor to pin 13 and the position 1 and position 2 to pins 3 and 4.
The actuator has been tested to operate at 10% less than the rated input voltage and is dual rated for $50 / 60 \mathrm{~Hz}$ operation.

Dielectric Communications • 22 Tower Road •Raymond, ME 04071 • (207) 655-4555 • (866) DIELECTRIC

